1. **Definition**
 - an agent that affects the contractility of the heart
 - may be positive (increases contractility) or negative (decreases contractility)
 - oral and intravenous agents available

2. **Indications**
 - hypotension
 - low cardiac output/congestive heart failure
 - shock (septic, cardiogenic, hypovolemic, neurogenic, anaphylactic)

3. **Desired Outcomes**
 - mean arterial pressure (MAP) > 60 mmHg
 - systolic blood pressure (SBP) > 90 mmHg
 - cardiac index (CI) > 2.1 L/min/m²

4. **Initiation of Therapy**
 - a loading dose is required for agents with long half-lives (e.g. milrinone)
 - if for low cardiac output, start low due to the risk of hypotension (e.g. dobutamine, milrinone)
 - if for hypotension, may begin at higher doses and taper as blood pressure tolerates

5. **Discontinuation of Therapy**
 - taper agents with short half-lives (dopamine, norepinephrine, epinephrine, dobutamine)
 - agents with longer half-lives may be discontinued
 - individualize according to the patient’s response

6. **Combination of Therapy**
 - if using the maximum dose of one agent, a second agent may be added (e.g. norepinephrine may be added to dopamine for refractory hypotension; milrinone may be added to dobutamine for refractory heart failure)
Dopamine Hydrochloride

1. PHARMACOLOGY

- stimulates adrenergic receptors of the sympathetic nervous system
- though primary effect is direct stimulation of β_1 and α-adrenergic receptors, also has an indirect effect by releasing norepinephrine from its storage sites
- also stimulates dopaminergic receptors in the renal, mesenteric, coronary, and intracerebral vasculature to produce vasodilation
- dose related effects:
 - low dose (2-3 µg/kg/min) affects dopaminergic receptors
 - moderate dose (4-10 µg/kg/min) affects β_1-receptors of the heart to increase contractility, heart rate and cardiac output
 - high dose (> 10 µg/kg/min) affects α-receptors to produce peripheral vasoconstriction

2. INDICATIONS

- hypotension
- low cardiac output in patients with low systemic vascular resistance (SVR)
- low urine output?

3. DOSAGE

- start infusion at a rate of 2-3 µg/kg/min then titrate to desired response
- maximum dose: 20 µg/kg/min

4. PREPARATION AND ADMINISTRATION

- standard peripheral concentration is made with 200 mg or 400 mg in D5W or NS 250 mL to give a concentration of 800 µg/ml and 1600 µg/ml, respectively
- for a more concentrated solution, 800 mg in D5W or NS 250 mL may be prepared for a concentration of 3200 µg/ml. MUST BE THROUGH A CENTRAL LINE

5. ADVERSE REACTIONS

- tachyarrhythmias
- hypertension
- extravasation may cause severe tissue necrosis (antidote is phentolamine – 5 to 10 mg in 10 to 15 mL of saline should be administered intradermally as soon as possible)

6. CAUTIONS/COMMENTS

- use a central line to minimize extravasation
- in patients with profound metabolic acidosis (pH ≤ 7.01), dopamine causes the release of norepinephrine from nerve terminals, which contributes to its vasoconstrictive and inotropic effects
- patients with low stores of norepinephrine (e.g. heart failure patients) may be less responsive
Norepinephrine Bitartrate (levaterenol)

1. **PHARMACOLOGY**
 - stimulates α-adrenergic receptors inducing peripheral vasoconstriction
 - also stimulates β_1-adrenergic receptors of the heart increasing contractility, heart rate and cardiac output
 - no effect on β_2-adrenergic receptors of the lung

2. **INDICATIONS**
 - severe hypotension (e.g. patients with low SVR)

3. **DOSAGE**
 - start infusion at 2 to 4 μg/min and then titrate to desired response
 - up to 30 μg/min may be required in patients with refractory shock

4. **PREPARATION AND ADMINISTRATION**
 - standard concentration is made by adding 4 mg to D5W or NS 250 mL for a concentration of 16 μg/mL
 - for a more concentrated solution, may add 8 mg to D5W or NS 250 mL for a concentration of 32 μg/mL. MUST BE THROUGH A CENTRAL LINE

5. **ADVERSE REACTIONS**
 - tachyarrhythmias
 - hypertension
 - decreased renal perfusion
 - increased myocardial oxygen demand
 - extravasation may cause severe tissue necrosis (antidote: phentolamine 5 to 10 mg in 10 to 15 mL of saline should be administered intradermally as soon as possible

5. **CAUTIONS/COMMENTS**
 - use central line to minimize extravasation

Phenylephrine Hydrochloride

1. **PHARMACOLOGY**
 - stimulates α_1-adrenergic receptors to cause vasoconstriction
 - little effect on β_1-adrenergic receptors of the heart at therapeutic doses (at higher doses, may see increased contractility)
 - no effect on β_2-adrenergic receptors of lung or peripheral blood vessels
 - indirect effect by releasing norepinephrine from its storage sites

2. **INDICATIONS**
 - hypotension (e.g. patients with low SVR)
3. **DOSAGE**

- a bolus of 100 µg IV push may be given if needed
- start a continuous infusion at 50 µg/min then titrate to desired response
- the recommended dosage range is 50 to 300 µg/min

4. **PREPARATION AND ADMINISTRATION**

- standard concentration is made by adding 10 or 20 mg to D5W or NS 250 mL for a concentration of 40 and 80 µg/mL, respectively
- for a more concentrated solution, may add 50 or 100 mg to D5W or NS 250 mL for a concentration of 200 or 400 µg/mL, respectively. MUST BE THROUGH A CENTRAL LINE

5. **ADVERSE REACTIONS**

- hypertension
- reflex bradycardia
- decreased cardiac output
- increased myocardial oxygen demand
- extravasation may cause severe tissue necrosis (antidote: phentolamine 5 to 10 mg in 10 to 15 mL of saline intradermally as soon as possible

6. **CAUTIONS/COMMENTS**

- use central line to minimize extravasation
- phenylephrine induced bradycardia and decreased cardiac output may be treated with atropine
- after IV push administration, the pressor effect occurs immediately and lasts for 15-20 minutes
- may be given intramuscularly or subcutaneously

Epinephrine Hydrochloride

1. **PHARMACOLOGY**

- directly stimulates α- and β- adrenergic receptors
- at therapeutic doses, main effects are cardiac stimulation and relaxation of smooth muscle of the lung
- dose related effects:
 - low dose – stimulate β-adrenergic receptors leading to increased contractility and heart rate
 - high dose – stimulate α-adrenergic receptors leading to vasoconstriction

2. **INDICATIONS**

- refractory hypotension
- symptomatic bradycardia
- severe anaphylaxis

3. **DOSAGE**

- start a continuous infusion at 1 µg/min then titrate to desired response
- the recommended dosage range is 1 to 12 µg/min; those with refractory hypotension may require higher doses
4. **PREPARATION AND ADMINISTRATION**

- standard concentration is made by adding 1 or 2 mg to D5W or NS 250 mL for a concentration of 4 or 8 µg/mL, respectively
- for a more concentrated solution, may add 10 or 25 mg to D5W or NS 250 mL. MUST BE THROUGH A CENTRAL LINE

5. **ADVERSE REACTIONS**

- tachyarrhythmias
- hypertension
- increased myocardial oxygen demand
- extravasation may cause severe tissue necrosis (antidote: phentolamine 5 to 10 mg in 10 to 15 mL of saline should be administered intradermally as soon as possible)

6. **CAUTIONS/COMMENTS**

- use central line to minimize extravasation
- may be given through an endotracheal (ET) tube, inhalation, or subcutaneously

Vasopressin

1. **PHARMACOLOGY**

- directly stimulates V₁ receptors of smooth muscles to cause vasoconstriction
- has little effect on vasoconstriction in hemodynamically normal patients

2. **INDICATIONS**

- vasodilatory shock
- diabetes insipidus
- GI hemorrhage
- cardiopulmonary resuscitation

3. **DOSAGE**

- optimum dosage remains to be established; clinical studies recommend a continuous infusion of 0.02-0.04 units/minute for vasodilatory shock
- can give 5-10 units IM or SQ 2-4 times daily as needed for diabetes insipidus
- a continuous infusion of 0.2-0.4 units/minute recommended for GI hemorrhage
- bolus 40 units as a single, one-time dose over 3-5 minutes during cardiopulmonary resuscitation

4. **PREPARATION AND ADMINISTRATION**

- standard concentration is made by adding 200 units to D5W 500 mL for a concentration of 0.4 units/mL

5. **ADVERSE REACTIONS**

- coronary artery vasoconstriction
- bradycardia
- decreased urine output
- bronchial constriction
6. **CAUTIONS/COMMENTS**
 - monitor blood pressure via arterial line
 - monitor CVP, UOP and ECG
 - when used for diabetes insipidus, monitor serum sodium and osmolality at least once daily

Dobutamine Hydrochloride

1. **PHARMACOLOGY**
 - directly stimulates β₁-adrenergic receptors of the heart
 - at therapeutic doses, increases contractility, heart rate and cardiac output by stimulating β₁-adrenergic receptors

2. **INDICATIONS**
 - heart failure
 - hypotension (e.g. patients with high SVR and pulmonary capillary wedge pressure)

3. **DOSAGE**
 - usual dosage is 2 to 20 µg/kg/min by continuous infusion

4. **PREPARATION AND ADMINISTRATION**
 - standard concentration is made by adding 250 or 500 mg to D5W or NS 250 mL for a concentration of 1000 µg/mL or 2000 µg/mL, respectively
 - for a more concentrated solution, may add 1000 or 2000 mg to D5W or NS 250 mL (total volume) for a concentration of 4 mg/mL and 8 mg/mL, respectively. MUST BE THROUGH A CENTRAL LINE

5. **ADVERSE REACTIONS**
 - tachyarrhythmias
 - increased myocardial oxygen demand
 - hypo/hyper- tension
 - extravasation may cause tissue ischemia or necrosis (use phentolamine for large amounts of extravasation to prevent vasoconstriction)

6. **CAUTIONS/COMMENTS**
 - slightly pink to brown colored solution is still potent

Milrinone

1. **PHARMACOLOGY**
 - phosphodiesterase inhibitor with both positive inotropic and vasodilatory activity
 - inotropic activity not associated with α- or β- adrenergic activity
 - vasodilatory effect due to direct action on vascular smooth muscle
2. **INDICATIONS**
- heart failure refractory to dobutamine

3. **DOSAGE**
- loading dose of 0.05 mg/kg is given over 15 to 30 minutes
- following loading dose, 0.375 to 0.75 µg/kg/min is given by continuous infusion

4. **PREPARATION AND ADMINISTRATION**
- standard concentration is made by adding 20 or 40 mg to D5W or NS to 100 and 200 mL, respectively, for a concentration of 0.2 mg/mL
- for a more concentrated solution, may add 40 mg to D5W or NS 100 mL for a concentration of 0.4 mg/mL. MUST BE THROUGH A CENTRAL LINE

5. **ADVERSE REACTIONS**
- may exacerbate myocardial ischemia
- hypotension
- nausea/vomiting
- thrombocytopenia (resolves within 1 to 2 weeks of decreasing dose or discontinuing therapy)

6. **CAUTIONS/COMMENTS**
- may be used with other inotropes to produce additive response
- rapid IV administration during loading dose may cause profound hypotension

Hemodynamic effects of inotropic agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mcg/kg/min)</th>
<th>HR</th>
<th>MAP</th>
<th>PCWP</th>
<th>CO</th>
<th>SVR</th>
<th>Diuretic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>0.5-2</td>
<td>↔</td>
<td>↔</td>
<td>←</td>
<td>←/↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 10</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↔</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>2.5-15</td>
<td>↔/↑</td>
<td>↔</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↔</td>
</tr>
<tr>
<td>Milrinone</td>
<td>0.375-0.750</td>
<td>↔/↑</td>
<td>↔/↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↔</td>
</tr>
<tr>
<td>Nesiritide</td>
<td>0.015</td>
<td>↔</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

Receptor effects of inotropic agents and vasopressors

<table>
<thead>
<tr>
<th>DRUG</th>
<th>α<sub>1</sub></th>
<th>β<sub>1</sub></th>
<th>β<sub>2</sub></th>
<th>Dopaminergic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobutamine</td>
<td>+</td>
<td>++++</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Dopamine 0.5-2 mcg/kg/min</td>
<td>+</td>
<td>++++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>2-5 mcg/kg/min</td>
<td>++</td>
<td>++++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>5-10 mcg/kg/min</td>
<td>++</td>
<td>++++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>> 10 mcg/kg/min</td>
<td>++++</td>
<td>++++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Epinephrine</td>
<td>++++</td>
<td>++++</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>++++</td>
<td>++++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>0</td>
<td>++++</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>++++</td>
<td>+ (higher doses)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>